Selasa, 28 Maret 2017
Invers dari Komposisi Fungsi
Perhatikan gambar diatas!
Fungsi f : A → B dan g : B → C , maka fungsi yang memetakan A ke C adalah fungsi komposisi (g o f)
f : A → B ditulis y = f(x)
g : B → C ditulis z = g(y)
____________________
z = g[f(x)] → (g o f)(x) = z
(g o f) -1 [(g o f)(x)] = (g o f) -1 (z)
x = (g o f)-1 (z) → (g o f) -1 (z) = x
g-1 : C → B ditulis y =g-1 (z)
f-1 : B → A ditulis x = f-1 (y)
____________________
x = f-1(y) → x = f-1 (g-1(z))
x = (f-1 o g-1) (z)
Dari persamaan di atas diperoleh hubungan
(g o f)-1(z) = (f -1 o g-1)(z)
(g o f)-1 = f -1 o g-1
Berdasarkan uraian di atas terdapat 2 cara untuk mencari invers fungsi komposisi:
1. Menentukan fungsi komposisinya kemudian di inverskan
2. Mula mula menentukan invers masing masing fungsi kemudian di komposisikan
CONTOH:
Fungsi f : R → R dan g : R → R dengan f(x) = 3x + 2 dan g(x) = 2x +4
Tentukanlah (g o f) -1 (x)
Jawab:
Cara 1 :
(g o f) (x) = g[f(x)]
= g (3x+2)
= 2(3x+2) + 4
= 6x +4+4
= 6x +8
(g o f)-1 (x) = x-8
6
Cara 2 :
f(x) = 3x + 2 → f -1 (x) = x-2
3
g(x) = 2x +4 → g-1 (x) = x- 4
2
(g o f) -1 (x) = ( f -1 o g-1 )(x)
= f -1[ g-1 (x) ]
= f -1( x- 4 )
2
= x-8
6

Written by Unknown
We are Creative Blogger Theme Wavers which provides user friendly, effective and easy to use themes. Each support has free and providing HD support screen casting.
Langganan:
Posting Komentar (Atom)
Mksh
BalasHapus